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Several less-than-optimal solutions exist. Using a priority queue, one can iterate through the fractions (generating them one by one) in O(KlgN) time. Using a fancier Math relation, this can be reduced to O(K). However, neither of these solution obtains more than 40 points, because the number of fractions (and thus K) is quadratic in N. 

The “good” solution is based on meta-binary search. To construct this solution, we need the following subroutine: given a fraction A/B (which is not necessarily irreducible), find how many fractions from the Farey sequence are less than this fraction. Suppose we had this subroutine; then the algorithm works as follows: 

1. determine a number X such that the answer is between X/N and (X+1)/N; such a number can be determined by binary searching the range 1..N, thus calling the subroutine O(lgN) times. 

2. make a list of all fractions A/B in the range X/N..(X+1)/N. For any given B, there is at most one A in this range, and it can be determined trivially in O(1). 

3. determine the appropriate order statistic in this list (doing this in O(NlgN) by sorting is good enough). 

It remains to show how we can construct the desired subroutine. We will show how it can be implemented in O(NlgN), thus giving a O(Nlg2N) algorithm overall. Let us denote by C[j] the number of irreducible fractions i/j which are less than X/N. The algorithm is based on the following observation: C[j]=floor(X*B/N)–Sum(C[D], where D divides j). A direct implementation, which tests whether any D is a divisor, yields a quadratic algorithm. A better approach, inspired by Eratosthene’s sieve, is the following: at step j, we know C[j], and we subtract it from all multiples of j. The running time of the subroutine becomes O(NlgN). 

Two improvements (not needed for this contest) have been discovered by the author: the time can be reduced to O(NlgN) overall, or the space can be reduced to O(sqrt(N)). A direction for future research is reducing the space to O(poly(lgN)), while keeping the time O(Npoly(lgN)). 

#include <stdio.h> 

#include <stdlib.h> 

#define PRINT_OUT(a, b) 

fprintf(fopen("farey.out", "w"), "%d %dn", a, b) 

struct frac { 

int p, q; 

}; 

int cmp_frac(const void *p1, const void *p2) 

{ 

const struct frac *f1 = (const struct frac *) p1; 

const struct frac *f2 = (const struct frac *) p2; 

return(f1->p * f2->q - f1->q * f2->p); 

} 

int gcd(int a, int b) 

{ 

while(a && b) { 

a %= b; 

if(a) 

b %= a; 

} 

return(a + b); 

} 

/* --- a simple O(N*(lgN)^2) algorithm, using O(N) memory */ 

int count_below_3(int n, int p, int cnt[]) 

{ 

int i, j, tot = 0; 

for(i = 2; i <= n; i++) 

cnt[i] = p * i / n; 

for(i = 2; i <= n; i++) { 

tot += cnt[i]; 

for(j = i; (j += i) <= n; cnt[j] -= cnt[i]) ; 

} 

return(tot - 1); 

} 

void find_frac_3(int n, int lo, int k) 

{ 

int i; 

struct frac *a, *p, f; 

f.p = lo, f.q = n; 

p = a = malloc(sizeof(*a) * n); 

for(i = 2; i <= n; i++) { 

p->p = ((lo + 1) * i - 1) / n; 

p->q = i; 

if((gcd(p->p, p->q) == 1) && (cmp_frac(p, &f) >= 0)) 

p++; 

} 

/* of course, this could use a linear time algorithm 

* to find the order statistic, but I didn't implement it 

*/ 

qsort(a, p - a, sizeof(*a), cmp_frac); 

p = a + k; 

PRINT_OUT(p->p, p->q); 

free(a); 

} 

void farey3(int n, int k) 

{ 

int *cnt, lo, skip; 

cnt = malloc(sizeof(*cnt) * (n + 1)); 

/* binary search */ 

for(skip = 1; skip < n - 2; skip <<= 1) ; 

for(lo = 1; (skip >>= 1); ) 

if(count_below_3(n, lo + skip, cnt) <= k) 

lo += skip; 

k -= count_below_3(n, lo, cnt); 

free(cnt); 

find_frac_3(n, lo, k); 

} 

int main(int argc, char **argv) 

{ 

int k, n, max, alg; 

fscanf(fopen("farey.in", "r"), "%d%d", &n, &k); 

farey3(n, k); 

return(0); 

} 

TEST IDEAS 

Test N M Fracs Comment 

0 10004 49823 30423977 small M 

1 16384 32714 81599337 small M 

2 32768 270189200 326387383 

3 39999 101329715 486329715 

4 38946 331054666 461055001 

5 10093 7742375 30969497 prime N; 1/4 of the way 

6 35069 36800 373843415 prime N; small M 

7 21187 68228094 136456189 answer: 1/2 

8 29418 220062481 263062481 

9 37777 49921 433803941 small M 


